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Dedication 

 

• The “probability and stats”  course was developed by 
Dr. Dana Kelly in the 1990s 

 

• We dedicate this course to his memory 

 

• One of Dana’s mantras (taken from the Copenhagen 
interpretation of quantum physics) was “Shut up and 
calculate!”  We embrace this approach in this class… 
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Bayesian Inference in Risk 
Assessment (P-102) 

 

• Section 1:  Course Topics 

• Section 2:  Review of Basic Probability Calculations 

• Section 3:  Introduction to Bayesian Inference 

• Section 4:  Introduction to Monte Carlo Sampling 

• Section 5:  Uncertainty Propagation in Risk Assessment 

 

Let us discuss the information in these sections… 
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Section 1:  Course Topics 

• The “stats” course, P-102, comprises three sections 

– Review of basic probability calculations 

• Things you should already know, so we will just remind you 
of them 

– Basic Bayesian statistical inference 

• We will use Excel to do the math 

– Will demo another tool for harder problems 

– Uncertainty propagation in risk assessment 

• Simple Monte Carlo sampling 

– Propagation of parameter uncertainty through risk model 

– We will illustrate this in Excel 
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Section 2: Review of Probability 

• Purpose 

– Students will review probability axioms and operations 

• Objectives 

– Students will be able to calculate results involving 

• “AND”, “OR”, “NOT” operations 

• Conditional probabilities 

• Bayes’ theorem 

• Discrete and continuous probability distributions 

– Students will understand the terms mean, variance, 
standard deviation, percentile, and be able to relate these 
to particular distributions used in the course 

 



1-6 

Section 3: Bayesian Statistical 
Inference 
• Purpose 

– Students will learn subjectivist interpretation of probability, 
concept of Bayesian updating, and applications to commonly 
encountered kinds of stochastic models 

• Objectives 

– Students will learn 

• Probability interpreted as a quantification of degree of plausibility 

• Bayesian inference using Excel for 

– Discrete priors 

– Conjugate priors for Poisson, binomial, and exponential 
models 

– Formal priors for Poisson, binomial, and exponential models 

• RADS Calculator for conjugate and non-conjugate priors 
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Sections 4 and 5: Uncertainty 
Propagation in Risk Assessment 
• Purpose 

– Students will see an overview of how Bayesian estimates 
of risk metrics (e.g., core damage frequency) are obtained 

• Objectives 

– Through examples using Excel, students will learn about 

• Monte Carlo sampling of distributions 

• Estimation of a “top event” probability by propagation of 
distributions through a logic model 

• Simple Monte Carlo sampling and Latin hypercube sampling 
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Course Reference 

• Handbook of Parameter Estimation for Probabilistic Risk 
Assessment, NUREG/CR-6823, September 2003. 

– Available on NRC web site at 

– www.nrc.gov/reading-rm/doc-
collections/nuregs/contract/cr6823 
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Supplemental Reference 

• Bayesian Inference for PRA: A Practitioner’s 
Guidebook, 2011 

– Available at  

– www.amazon.com/Bayesian-Inference-Probabilistic-Risk-
Assessment/dp/1849961867 

– The text for P-502 
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Supplemental Reference 

• Bayesian Inference for NASA Probabilistic Risk and 
Reliability Analysis, NASA/SP-2009-569, 2009 

– Available at 

– www.hq.nasa.gov/office/codeq/doctree/SP2009569.pdf 
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Loss of Offsite Power (LOSP) 
Example 
• The “LOSP example” will be used as a central example 

throughout most of the course 

• A system uses offsite power, but has two standby 
emergency diesel generators (EDGs) 

• Occasionally offsite power is lost (an “initiating event”) 

– When this happens the EDGs are demanded to start and 
run 

• The system 

– Succeeds if either EDG starts and runs for six-hour 
mission time 

– Fails otherwise 
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The Concept of a Scenario  

• Scenario modeling 

– For each hazard, identify an initiating event and necessary enabling 
conditions that result in undesired consequences 

• Enabling conditions often involve failure to recognize a hazard or failure to 
implement controls such as protective barriers 

• Accident scenario is the sequence of events comprised of: 

– Initiating event + enabling conditions + events that lead to adverse 
consequences 

Initiating Event

System Does 
Not 

Compensate

System Limits 
Consequence 

Severity?

Accident Timeline

Desired System 
Operation

Operational    Deviation

Accident

Consequences

NoYes

Low High

Accident Prevention Consequence Mitigation
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LOSP Example 

• A PRA will have an event tree representing the scenario 

– Fault trees will represent the diesel generator failures 

LOSP 

pDG 

Loss of 

Offsite Power 

Diesel Generator 

System Failure 

Diesel Generator 

System Success 
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The Minimal Cut Sets 

LOSP * DG-A-FTS * DG-B-FTS or 

LOSP * DG-A-FTS * DG-B-FTR or 

LOSP * DG-A-FTR * DG-B-FTS or 

LOSP * DG-A-FTR * DG-B-FTR 
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Recovery of Offsite Power 

• Core damage can be averted if offsite power is 
recovered 

• Assume traditional engineering analysis shows… 

– Recovery must occur by six hours to avert core damage 

• Append nonrecovery event to minimal cut sets 

– This represents probability that offsite power is not 
recovered within six hours 
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Recovered Cut Sets 

LOSP*DG-A-FTS*DG-B-FTS*OSP-NONREC or 

LOSP*DG-A-FTS*DG-B-FTR*OSP-NONREC or 

LOSP*DG-A-FTR*DG-B-FTS*OSP-NONREC or 

LOSP*DG-A-FTR*DG-B-FTR*OSP-NONREC 
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“Real” PRA Cut Sets 

• A “real” PRA may have additional terms not considered 
in this class 

– Common Cause Failure 

– Unavailability of the component (e.g., out for test or 
maintenance activities) 

– Human reliability 

– Component recoveries 
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Section 2:  Review of Basic Probability 
Calculations 

• Purpose 

– Students will review fundamentals of probability 

• Objectives 

– Students will be able to perform simple calculations 
involving 

• “AND”, “OR”, “NOT” operations 

• Conditional probabilities, independent events 

• Bayes’ theorem 

– Students will understand 

• Discrete and continuous probability distributions 

• Moments and percentiles of distributions 

 
Appendix A 
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Outline 

• Topics to be covered include 

– Basic framework for probabilistic models 

– Rules for manipulating probabilities 

– Discrete probability distributions 

– Continuous probability distributions 

– Moments and percentiles of distributions 
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Basic Framework 

• An experiment can result in a number of outcomes.  
Experiment may be “trial,” “test,” “demand,” etc. 

• Sample space S is the set of all possible outcomes on 
any one experiment 

• An event is a set of outcomes 

– Its probability is the sum of the probability of each 
constituent outcome 

Pages A-1 through A-4 
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Example 1 

• Experiment:  Rolling six-sided die 

• The possible outcomes (i.e. the sample space, S) 

– One of the six faces of the die 

• Some possible events 

– A particular number 

– Even number 

– Odd number 

– Etc. 
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Example 2 

• Experiment:  Try to start EDG-A 

• The possible outcomes (i.e. the sample space, S) 

– Failure to start (FTSA) 

– Start but failure to run (FTRA) 

– Start and run to end of mission (SuccessA) 

• Some possible events 

– EDG-A fails somehow 

– EDG-A starts 

– Etc. 
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Example 3 

• Experiment:  Try to start two EDGs, EDG-A and EDG-B 

• The outcomes (i.e. the sample space): 

 

 

 

• Some possible events 

– At least one EDG succeeds 

– Both EDGs fail somehow 

– At least one EDG fails to start 

– Exactly one EDG fails 

– Etc. 

 

 

FTSA & FTSB FTSA & FTRB FTSA & SuccessB 

FTRA & FTSB FTRA & FTRB FTRA & SuccessB 

SuccessA & FTSB SuccessA & FTRB SuccessA & SuccessB 
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Example 4 

• It is sometimes helpful to show events and outcomes 
via a Venn diagram 

– Three events, 10 outcomes 

John Venn 
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Building Events from Other Events or 
Outcomes  — OR 

• A OR B = combined event containing all events that are 
in A or in B 

– Also written A  B, the union of A and/or B 

– The union symbol, , is easy to remember since symbol 
looks like the letter “U” 

• In a PRA, minimal cut sets are “ORed” together to 
obtain overall results of the analysis 
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Building Events from Other Events or 
Outcomes  — AND 

• A AND B = combined event containing all events that 
are both in A and in B 

– Also called intersection of A and B, written A  B 

– The intersection symbol  can be remembered as the 
opposite of the union symbol, or n in and 

• In a PRA, the events within a single minimal cut set 
are “ANDed” together to obtain the cut set value 

• A and B are disjoint or mutually exclusive if they have 
no events in common 

– I.e. A AND B is empty (denoted by ) 
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Building Events from Other Events or 
Outcomes  — NOT 

• The complement of A, or NOT A, is the event 
containing all the events (in the sample space) that are 
not in A. 

• Written    or /A or A* or A 

– Example:  In SAPHIRE (will see later), successfully 
starting DG-B denoted as /DG-B-FTS 

 

 

 

 

 

A
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Elementary “Rules” of Probability  

1. Probability of an event A, “Pr(A)” or “P(A),” is a 
nonnegative real number 

2. Probability of the union of non-overlapping (disjoint) 
events is the sum of the event probabilities 

3. Probability of all possible outcomes (i.e., the sample 
space) equals 1.0 

• Can show from above axioms that 0 ≤ Pr(A) ≤ 1 

 

Andrei Kolmogorov 
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Rules for Manipulating Probabilities - 
Complements  

• The NOT (or complement) operation 

– Subtract probability from 1.0 

– Example, Pr(not A) = 1 - Pr(A) 

• A probability problem tip 

– With messy problems using terms such as “at least” or “at 
most,” first calculate probability of complement of event: 

• Pr(A) = 1 - Pr(not A) 

• For example, Pr(at least one failure) = 1 – Pr(zero failures) 

– “At least”  > 

• For example, Pr(at least one failure) = Pr(# failures > 0) 

– “At most”  < 
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Rules for Manipulating Probabilities – 
OR (Union) 

• For the OR (or union) operation, we consider two cases 

1. If A, B are disjoint 

• Pr(A or B) = Pr(A) + Pr(B) 

• Examples 

– With a die, Pr(1 or 2) = Pr(1) + Pr(2) because outcomes 
are disjoint 

– With a coin toss, Pr(H or T) = Pr(H) + Pr(T) 

2. In general, even if A, B are not disjoint 

• Pr(A or B) = Pr(A) + Pr(B) - Pr(A AND B) 

• Can extend to three or more events by using the inclusion-
exclusion rule 

– http://en.wikipedia.org/wiki/Inclusion-exclusion_principle 
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Rules for Manipulating Probabilities – 
AND (Intersection) 

• For the AND (or intersection) operation, we consider 
two cases 

1. If A, B are independent 

• Pr(A AND B)  =  Pr(A) • Pr(B)  (this is definition of statistical 
independence) 

2. If A, B are not independent (i.e., dependent) 

• Pr(A AND B)  =  Pr(A) • Pr(B | A) 

  =  Pr(B) • Pr(A | B) 

• Pr(B | A) read as “probability of B occurring, given that A 
occurs,” or more simply, “probability of B, given A” 

– By conditioning on A, we are “renormalizing” the sample 
space to be just A 

– Pr(B | A) is the fraction of B that is found within A  
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Definition of “Conditional Probability” 

• Conditional probability definition 

– We said that in general 

• Pr(A AND B)  =  Pr(A) •  Pr(B | A) 

– The conditional probability is last term, Pr(B | A), so 

• Pr(B | A) = Pr(A AND B) / Pr(A)  , Pr(A)  0 

• Pr(A | B) = Pr(A AND B) / Pr(B)  , Pr(B)  0 

– These last equations define “conditional probability” 

• We will see (later) that this product rule of conditional 
probabilities leads us to “Bayes’ Theorem” 
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Do Not Confuse Independent and 
Disjoint 

• If A, B are mutually exclusive (i.e., disjoint), then 

– Pr(A AND B) = 0 

• If Pr(A AND B) = 0 then Pr(A AND B)  Pr(A) • Pr(B) 
unless either Pr(A) or Pr(B) = 0 

• When mutually exclusive, A and B are not independent 

– In fact, they are very strongly dependent 

• If one event occurs, other event cannot occur 

– If heads occurs on a coin toss, tails cannot occur 

• They simply are disjoint 

• On a Venn diagram, they do not overlap 
A B 

S 
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Independent versus Disjoint 

• An example using disjoint events 

– If two events A and B are disjoint (mutually exclusive) 

• Pr(A AND B ) = 0 

• If Pr(A) = 0.6 while Pr(B) = 0.2 then the Venn diagram is 

Disjoint 

Pr(A AND B) = 0.12 

if A, B were 

independent… 
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Independent versus Dependent 

• An example using dependent events 

– If Pr(A) = 0.6, P(B) = 0.2, and Pr(A AND B) = 0.16 

• Then Pr(B | A) = 0.26667  since 

• Pr(A AND B)  =  Pr(A) •  Pr(B | A) 

A and B are dependent 

Pr(A AND B) = 0.12 

if A, B were 

independent… 

Where is Pr(B|A) on the Venn diagram?? 

16 blocks/60 blocks = 0.26667 
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Disjoint, Independent, Dependent 
Summary 

• The table below summarized the probability rules when 
quantifying multiple events 

Case Operation Rule 

Disjoint OR p(A OR B) = p(A)+p(B) 

 

AND p(A AND B) = 0 

 

Independent OR p(A OR B) = p(A)+p(B) - p(A AND B) 

 

AND p(A AND B) = p(A)p(B) 

 

Dependent OR p(A OR B) = p(A)+p(B) - p(A AND B) 

 

AND p(A AND B) = p(A)p(B | A) 

                     = p(B)p(A | B) 

 

≈ p(A)+p(B)  (rare event approx.) 

≈ p(A)+p(B)  (rare event approx.) 
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Bayes’ Theorem 

• A set of events {Ci } is a partition of the sample space C  

– If all {Ci}s in C are mutually exclusive 

• Each pair is mutually exclusive…no overlap 

– And if union of {Ci}s is the entire sample space C 

• Bayes’ Theorem: If {Ci } is a partition of the sample space, 

 

 

 

• Bottom term is Pr(E) (where E is the “evidence”) 

                                                                                                             

     

is called “Law of Total Probability”   
Pages A-4 through A-12 




j

jj

ii
i

CCE

CCE
EC

)Pr()|Pr(

)Pr()|Pr(
)|Pr(


j

jj CCEE )Pr()|Pr()Pr(

Thomas Bayes 

http://www.youtube.com/watch?v=D8VZqxcu0I0 

http://www.youtube.com/watch?v=D8VZqxcu0I0
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Bayes’ Theorem 

• If we are calculating probability of event C where 
evidence E is available 

Pr(C | E) = Pr(C) Pr(E | C) / Pr(E) 

• Terms in equation above have specified names 

Pr(C | E): Posterior probability (or posterior distribution) 

Pr(C): Prior probability (or prior distribution) 

Pr(E | C): Probabilistic model, likelihood, or aleatory model 

Pr(E): Unconditional (marginal) probability of  
  evidence 
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Bayes Example 

• Tests for integrity are carried 
out on radiation sources by 
the manufacturer 

• Hospital gets 60% of its 
sources from manufacturer 
A, the rest from manufacturer 
B 

– Manufacturer A results from 
its tests:  10% cracked 

– Manufacturer B results from 
its tests:  5% cracked 

 

Not Cracked Not Cracked 

Cracked Cracked 

Hospital 

60% 40% 
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Bayes Example 

• Incident report is later sent to the NRC regarding leak 
from cracked source at the hospital 

– What is the probability that cracked source came from 
manufacturer B? 

→Pr(Manufacturer B | crack) =  

Pr(Manufacturer B) Pr(crack | Manufacturer B) / Pr(crack) 

 = (0.4)(0.05) / [(0.6)(0.10) +(0.4)(0.05)]        

 = 0.02 / 0.08 

 = 0.25 

25% chance it came from Manufacturer B 

75% chance it came from Manufacturer A 
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Discrete Probability Distributions 

• Outcomes can be summarized by a random variable X, 
which takes possible real values x 

• An “event” is then a set of possible values assumed by X 

• Probabilities of events are calculated using X’s distribution 
function (sometimes called probability mass function) 

– f(x) = Pr(X = x) 

– Cumulative distribution is: 

   

• Facts about a discrete distribution: 

 f(xi )  0    and 

 Page A-5 

 
iall

ixf 1)(





jtoi

ij xfxXF
0

)()(
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Examples:  Number of Spots on Dice 

 

 

 

 

 

 
 

    

       Spots on One Die                       Total Spots on Two Dice 

1 2 3 4 5 6 7 8 9 10 11 12 13

x

0.00

0.05

0.10

0.15

0.20

f 
(x

)

0 1 2 3 4 5 6 7

x

0.00

0.05

0.10

0.15

0.20

f 
(x

)
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Continuous Probability Distributions 

• Random variable X takes on values in a continuous 
range, such as from 0 to  

• For any random variable X, Pr(a  X  b) = F(b)  F(a) 

– where F is the cumulative distribution function (cdf) 

• In most cases, can write this in terms of a probability 
density function, f(x), which is the derivative of F(x): 

 

  Pr(a  X  b) =  
b

a
dxxf )(

Pages A-5 through A-6 
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Continuous Probability Distributions 

• Relations between pdf [f(x)] and CDF [F(x)] 

– F(x)  Pr( X  x ) =                      has no units    

– f(x) = dF(x)/dx, has units x-1 

• Note, Pr(X = x) = 0 for any specific value of x 

– But probability that 

 X is in an interval 

 is typically nonzero 

 

Note that graph scale is for F(x) 

,' 

x

)dxf(x'
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Continuous Probability Distributions 

• Properties of probability density function, f(x) 

– f(x) > 0 for all x 

 

–   

 

• Sometimes we will use improper distributions in 
Bayesian inference, where this integral diverges 






1f(x)dx
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Continuous Probability Distributions 

Beta(2, 2) 
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Normal Distribution 

• Arises in many settings 

– Primary application in this 

 course is as a “link” to the lognormal distribution 

– Density function in HOPE, page A-15 

• If X has a normal(μ, σ2) distribution, then 

 

 

 

  is tabulated in many books, for example HOPE Table C-1 

Can also use =NORMDIST(x, , , TRUE) in Excel 

Pages A-15 

through A-16 








 








 





σ

μx

σ

μx

σ

μX
xX Pr)Pr(

Carl Friedrich Gauss 
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Moments and Percentiles 

• The mean, or expected value, or expectation, of X is 
weighted average of the values of X 

 

–       if X discrete 

 

–         if X continuous 

 

Pages A-8 through A-10 

 
xx

f(x)xx)Pr(XxE(X)





 xf(x)dxE(X)
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Moments and Percentiles 

• The variance is the weighted average of [X  E(X)]2  

→                                                                       if X discrete 

 

→                                                if X continuous 
 

• The standard deviation is the square root of the 
variance (same units as x) 

  σ = sqrt(Variance) 

 
x

xfXExX )()]([)var( 2





 dxxfXExX )()]([)var( 2
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Mean Example 

• We have the discrete distribution for a single die 

– What is the expected value? 

– Pr(X = x) = 1/6, x = 1, 2,…, 6 

– E[X] = 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6) 

        = 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 1 = 3.5 

– Since discrete, we can not really 

 get an outcome of 3.5. 

 Possible outcomes are 1, 2, 3, 4, 5, or 6  

– In general, mean can be any value 

 

0 1 2 3 4 5 6 7
x

0.00

0.05

0.10

0.15

0.20

f 
(x

)

mean
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Moments and Percentiles 

• The 95th percentile, denoted x0.95, is the value such that 

F(x0.95) = 0.95 

• Similar definition for any number from 0 to 100 percent 

• Special cases common in PRA include 

– Median = 50th percentile 

– Upper bound = 95th 

• Should properly be called 95% upper bound 

– Lower bound = 5th 

• Should properly be called the 5% lower bound 

• For discrete distributions, exact percentile may not be observable 
value, as was the case for the mean 
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Moments and Percentiles 
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Moments and Percentiles 

• Alternative language 

– The q quantile is the 100q percentile 

• If a distribution is positively skewed (longer tail on the 
right), then mean is greater than median 

– E[X] > 50th percentile 

– Also, the mode (highest point on the pdf) is less than the 
50th percentile for positively skewed distributions 

• Mode < Median < Mean 
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Distribution Summary Worksheet 

• A tool for this course is the Excel spreadsheet titled 
“Distribution Summary Worksheets” (DSW) 

• DSW is divided into two different types of worksheets 

– Bayesian inference (for conjugate cases) 

– Probability distributions 

• The probability distributions include: 

– Beta  Binomial Exponential 

– Gamma  Lognormal Normal  

– Poisson   Weibull 
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DSW Distribution Example 
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Tips for Solving Problems 

• Write what you have 

– Can you list the outcomes? 

– What events are relevant? 

– What is “fixed” and what is “random”? 

– What is the problem asking for? 

– What formulas relate to this question? 

• Do not try to do everything in your head. 

– Use pencil and paper, and proceed step by step through 
the problem 
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Section 3:  Introduction to Bayesian 
Inference 
• Purpose 

– Present the subjectivist interpretation of probability, Bayesian inference 
for single-parameter problems, use of Excel functions, and applications 
to commonly encountered probabilistic models 

• Objectives:  Students will learn 

• Probability interpreted as a quantification of state of knowledge 

• Bayes’ Theorem, Bayesian inference for parameter values in following: 

– Binomial, Poisson, and exponential (aleatory) models 

– Relation of these models to likelihood function in Bayes’ Theorem 

• Use of discrete priors 

• Conjugate priors for Poisson, binomial, and exponential likelihoods 

• Formal priors for Poisson, binomial, and exponential data 

• Use of spreadsheets to update conjugate priors 

• Use of online RADS calculator for updating conjugate priors and 
nonconjugate lognormal priors 
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Elementary Bayesian Statistical 
Inference 
• Topics to be covered 

– Subjective interpretation of probability 

– Bayes’ Theorem as mechanism for Bayesian inference 

– Likelihood functions (aleatory models) 

• Binomial distribution 

• Poisson distribution 

• Exponential distribution 

– Prior distributions (epistemic uncertainty) 

• Discrete 

• Conjugate 

• Formal 

• Nonconjugate 

 

George Apostolakis 
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Bayesian Statistical Inference 

• General framework is covered in HOPE… 

– Page 6-2 (one-page introduction) 

– Section 6.2.2 for initiating events and running failures 

• Failure to run is also covered in Section 6.5 

– Section 6.3.2 for failures on demand 

– Section B.5 for summary of Bayesian estimation 
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Motivation for Bayesian Inference 

• Problems with frequentist inference 

– If data are sparse, estimates can be unrealistic (0 events in 
some cases) 

– No way to incorporate nonempirical “data” 

• For example, expert judgment 

– Difficult to propagate uncertainties (i.e., confidence intervals) 
through logic models 

• Solution:  A different interpretation of “probability” 

– Information about the parameter, beyond what is in the 
empirical data, is included in the estimate 

– Use Monte Carlo sampling to propagate uncertainties 
(expressed as probability distributions) through logic models 
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Subjective Probability 

• In the Bayesian, or “subjectivist,” approach, probability is a 
quantification of state of knowledge 

– It is used to describe the plausibility of an event 

• Plausibility – “Apparent validity” 

– A mechanism to encode information 

• Note that, for “Bayes’ Theorem,” 

– Thomas Bayes 

 never wrote it 

– Laplace first used 

 it in real problems 

 
Adapted from “Probability and Measurement Uncertainty in Physics” by Giulio D’Agostini, December 1995 
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Bayesian Parameter Estimation 

• The general procedure is: 

1. Begin with an aleatory model for the process of interest 

2. Specify a prior distribution for parameter(s) in this model, 
quantifying epistemic uncertainty, i.e., quantifying state of 
knowledge about the possible parameter values 

3. Collect data 

4. Obtain the posterior (i.e., updated) distribution for the 
parameter(s) of interest 

5. Check validity of model (P-501 and P-502 courses) 

• We follow this process to make inferences, that is, to determine 
the probability that a model or hypothesis is reasonable, 
conditional on all available evidence 
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Common Aleatory Models in PRA 

• Binomial 

• Poisson 

• Exponential 

• We will use these models to “count” failures 
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What can we count? 

• Examples of Poisson 
processes 

– Counting particles 
such as neutrons or 
photons 

– Number of (lit) lights 
failing 

– Arrival of customers 

– Large earthquakes 

– HTTP requests on a 
server 

– Loss of Offsite Power 

• Examples of Bernoulli 
(binomial) processes 

– Tossing a coin 

– Starting a car 

– Discrete random walk 

– Turning on a light 

– Birth of a child 

– Launching a rocket 

– Failures of a EDG 

8 



3-9 

A “roadmap” (from NASA/SP-2009-569) 
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Binomial Distribution 

• Commonly used model for failure to change state. 

• Assumptions about the physical process 

1. On each demand, outcome is a failure with probability p 
(alternatively, a success with probability q=1  p) 

– This p is the same on every demand 

– Called a Bernoulli trial 

2. Occurrences of failures on different demands are independent 

• Form of the data 

– We observe a random number of failures, X, in a fixed or 
specified number of demands n 

Pages 2-7 through 2-10, A-12 through A-13 



3-11 

Binomial Distribution:  Functional Form 

• Then the random variable X has a binomial(n, p) distribution: 

  

          for x = 0, 1, …, n 

          (x = number of failures) 

 

 Distribution parameters are p (unknown) and n (specified) 

• For Bayesian inference, we write f(x) as f(x|p), called the likelihood 
function, sometimes denoted L(p) 

– Leads to frequentist maximum likelihood estimate (MLE) for p of 
x/n 

• X is observed (failures) and p is unknown (focus of inference) 
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Binomial Coefficient 

• The binomial coefficient is defined as 

  

       

• Example 
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Binomial Distribution:  Examples 

n = 10, p = 0.3 n = 100, p = 0.3 
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Binomial Distribution:  Summary 
Measures 

• Moments 

– Mean = np 

– Variance = np(1-p) 

• Probability 

– To find probability of seeing exactly x outcomes in n number of 
trials [or Pr(X=x | n, p)] use 

 =BINOMDIST(x, n, p, FALSE) in Excel 

• To find the cumulative of this use [Pr(0≤X≤x)] 

  =BINOMDIST(x, n, p, TRUE) in Excel 

– To find approximate (100z)th percentile of X use 

• =CRITBINOM(n, p, z) in Excel 

• Example, to find 95th 

=CRITBINOM(n, p, 0.95) 
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Poisson Distribution 

• Most commonly used aleatory model for initiating events 
and failure to operate for specified time period 

• Assumptions on the physical process 

1. Probability of event in short time period t is 
 approximately t, for a constant  

2. Simultaneous events do not occur 

3. Occurrences of events in disjoint time periods are 
independent 

• Form of the data 

–  We observe a random number of events, X, in a fixed or 
specified time period t  

• X is observed and  is unknown (focus of inference) 

Pages 2-2 through 2-7, A-13 through A-14 
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Poisson Distribution:  Functional Form 

• Then the random variable X has a Poisson(t) distribution: 

        

               for x = 0, 1, 2, … 

                         (x = number of events) 

  

 The distribution depends on one quantity, t, ( unknown, t specified) 

– Therefore, product t is sometimes written as  (or even ), and the 
distribution is called Poisson() 

• For Bayesian inference, we write f(x) as f(x|), called the likelihood 
function, sometimes denoted L() 

– Leads to frequentist MLE  for  of x/t 
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Poisson Distribution:  Examples 
mu = 0.3 mu = 3 

mu = 30 
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Poisson Distribution:  Summary 
Measures 

• Moments 

– Mean = t =  

– Variance = t =  

• Probability 

– To find probability of seeing exactly x outcomes in time t [or 
Pr(X=x | t, )] use 

 =POISSON(x, mean, FALSE) in Excel  

• To find the cumulative of this use [Pr(0≤X≤x)] 

  =POISSON(x, mean, TRUE) in Excel 

– To find approximate (100z)th percentile of X? 

• There is no “CRITPOISSON” in Excel, so need to look at the 
cumulative distribution to determine this 
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DSW Poisson Example #1 

• To find Pr(X=2 | t=10 yr, λ=0.3/yr) 
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DSW Poisson Example #2 

• To find Pr(X ≤ 2 | t=10 yr, λ=0.3/yr) 
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Exponential Distribution 

• A commonly used aleatory model for a time duration 

– Time to repair component, time to suppress fire, etc. 

• Very simple (sometimes too simple) 

• Setting:  Watch something until an event of interest 
occurs, for example 

– Failure to run 

– Restoration of power 

– Suppression of fire, etc. 

• Let T be a random variable representing time when 
event occurs 

Pages 2-17, A-17 through A-18 
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Exponential Distribution:  Genesis 

• Assumption on the physical process 

1.  For t  0 and small t 

 Pr( T  t + t | T > t)   t  (for a constant ) 

• Interpretation 

– If the system is running at time t, probability that system will fail 
in next small time interval t is t, regardless of what t is.   

– That is, the system does not improve or degrade (i.e., age) as 
a function of time 

• Form of the data 

–  We observe the event times, Ti, i = 1, 2,…, n  

• T is observed,  is unknown (the focus of inference) 
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Exponential Distribution:  Graphs 

• Under the assumptions from the previous page 

– T has an exponential() distribution 

 

      for t ≥ 0          for t ≥ 0 
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Exponential Distribution 

• Units 

– “ t” is unitless 

–  has units of 1/t (in PRA, usually per hour) 

• Initiating events are often per year 

• Alternative parameterization in terms of μ = 1/ . 

– Just rewrite formulas in obvious way 

– Units of μ are units of t 

• Also known as “mean time to failure” (MTTF) 

• Moments 

– Mean = 1/ = μ  

– Variance = 1/2 = μ2 



3-25 

Exponential Distribution:  Likelihood 
Function 

• Likelihood function for n observed 
times, ti 

 

 

 

• Leads to frequentist MLE for  of  n / ti 
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Bayes’ Theorem and Bayesian 
Parameter Estimation – Discrete Case 

• Consider the unknown parameter  (same idea if the parameter is p) 

• For now, assume X (observed variable) is discrete, with f(x| ) = 
Pr(X=x| ) 

• Also assume that the unknown parameter λ can only take discrete 
values,  1,  2, … 

• Define discrete prior distribution, πprior( i ) = Pr( =  i ). 

• By Bayes’ Theorem, 

  

 

  or 

 

 

• Denominator is a normalizing constant 
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Bayes’ Theorem and Bayesian 
Parameter Estimation – General Case 

• Define πprior(), the prior pdf of  

– Discrete, continuous, or mixed 

• Let f(x | ) be the pdf of X, dependent on  

– This is the likelihood or aleatory model 

• The posterior pdf of  is 

 

 

• πpost is proportional to the product of the prior distribution and 
the likelihood function 

– πpost is what we put into our PRA basic events 
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Bayes’ Theorem is Basis for Bayesian 
Updating of Data 

• Bayes’ Theorem: 

 

 

 

• Where: 

–  q is parameter of interest 

–  o(q) is prior distribution 

–  L(E|q) is likelihood function 

–  1(q|E) is posterior distribution (updated estimate) 

1 q  E ( ) 
L  E   q ( )  0  q ( )

L  E  q ( )   0  q ( ) d q
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Probability Distributions Represent 
Uncertainty 

• Usually used to represent state of knowledge of parameter values 

– Model assumptions typically addressed via sensitivity studies 

• Probability distribution () represents analyst’s uncertainty about 
unknown value of  

– Note that  may not be observable (for example, if a failure rate) 
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Bayes’ Theorem and Bayesian 
Parameter Estimation – General Case 

• If prior distribution is continuous 

– Parameter (e.g., ) has values over a continuous range 
(and a continuum of possible values). 

• Even though our goal is to obtain posterior distribution 
[πpost( | x)] for a parameter λ, need to remember 

– λ is assigned a prior distribution (representing information 
about possible values of λ) 

• Often convenient to summarize distribution by metrics such 
as mean, variance, or percentiles 

– Note that the distribution (of PRA parameters) is usually 
subjective, not a real, physical or empirical distribution 

• We do not “see” probabilities 
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Historical Use of Bayes Theorem 

• Laplace, in 1774, used Bayesian methods to estimate the mass of 
Saturn 

– Assumed uniform prior density (what was known at the time) 

– Data consisted of mutual perturbations between Jupiter and 
Saturn 

• His result was that he gave odds of 11,000 to 1 that his mass 
estimate* is not in error by more than 1% 

– What do odds of 11,000 to 1 imply? 

• That the point estimate ± 1% is the 99.99% credible interval 

• 200 years of science increased his estimate by about 0.6% 

– Laplace would have won his bet (so far!) 

*1/3512th of solar mass = 5.7  1026 kg 

Pierre Laplace 
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Odds? 

• Odds typically 
thought of as a 
“betting” term 

– Really a way to sneak-
in probability to a 
discussion! 

• Odds =   P(event)    .  

           [1-P(event)] 

– This is the odds for 
something 
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Odds? 

• Odds typically 
thought of as a 
“betting” term 

– Really a way to sneak-
in probability to a 
discussion! 

• Odds =   P(event)    .  

           [1-P(event)] 

– This is the odds for 
something 

Total odd of 

dying (any cause) 

 

“Odds of Dying” 

National Safety Council 
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Uses of Posterior Distribution 

• For presentation purposes 

– Plot the posterior pdf 

– Give the posterior mean 

– Give a Bayes credible interval, an interval that contains 
most of the posterior probability (e.g. 90% or 95%) 

• 90% interval  <5th, 95th> 

• 95% interval  <2.5th, 97.5th> 

• For risk assessment 

– Sample from the distribution of each parameter 

– Combine the results to obtain sample from Bayes 
distribution of end-state frequency 
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Prior Distributions 

• We are going to examine three different situations 
related to different types of prior information 

– Discrete priors 

– Conjugate priors 

• Informative 

• Noninformative (or formal) 

– Nonconjugate priors 



3-36 

Discrete Prior Distributions 

• These priors are easy to update with a spreadsheet (e.g., Excel) 

– Follows directly from Bayes’ Theorem 

• For example, see “discrete prior.xls” in Excel folder 

 

 

• Numerator in Bayes’ Theorem is product of likelihood and prior 
probability of  i   

– To obtain full posterior probability, divide every such product by 
the sum of all such products 

– This makes the posterior probabilities (for all possible values of i ) 
sum to 1.0  

• Discrete priors were once common in risk assessment 

– Not used much these days 

Pages 6-9 through 6-11, 6-33 through 6-35 
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Example of Discrete Prior and Posterior 

Page 6-10 

0.0 1.0 2.0 3.0 4.0 5.0 6.0

lambda (events per year)

0.00

0.10

0.20

0.30

0.40

p
ro

b
a

b
ili

ty

Coarse discrete prior for λ 

(events per year) 
0.0 1.0 2.0 3.0 4.0 5.0 6.0

lambda (events per year)

0.00

0.10

0.20

0.30

0.40

p
ro

b
a
b
ili

ty
Posterior for λ, based on 10 

observed events in 6 years 



3-38 

CONJUGATE PRIORS 
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Conjugate Priors 

• Prior and posterior distribution have same functional form 

– Only distribution parameters change to reflect data incorporated 
via likelihood function 

• This means you can write down the posterior distribution with 
just arithmetic 

• Mathematically convenient (no integration) 

– Widely used in PRA (perhaps too widely) 

• In this section, we will address conjugate priors for three 
aleatory models commonly used in PRA 

– Binomial distribution 

– Poisson distribution 

– Exponential distribution 
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Binomial Likelihood – Beta Conjugate Prior 

• Facts about beta(, β) distribution 

– beta(, β) density 

• f(p) = C pα-1(1-p)β-1 

– Mean:   / ( + β) 

– Variance:  mean(1 – mean)/( + β + 1) 

– Percentiles from tables in 

 HOPE, App. C 

– Easier and more accurate 

 to use BETAINV in Excel: 

100p percentile = BETAINV(p, , ) 

– SAPHIRE uses mean and  (called “b” 
by SAPHIRE) 

 

Pages A-21 through A-22, C-8 through C-13 
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Binomial Likelihood – Beta Conjugate Prior 

• If X is binomial(n, p) and gprior(p) is beta(prior, βprior) 

– Then posterior distribution of p is 

• beta(post, βpost) 

–    post = prior + x (x = # events) 

–    βpost = βprior + n - x (n = total # trials) 

• prior is like prior number of events 

• prior is like prior number of successes 

• Posterior mean is (prior + x)/(prior + βprior + n) 

• This is a weighted average of MLE, x/n, 

 and prior mean, prior /(prior + βprior ) 

 

Pages 6-35 through 6-37 
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DSW Binomial-Beta Bayesian Example 

• Assume our prior is ~Beta(1, 1) 

• Assume we see 15 failures in 87 demands 

Step 1 – Specify the Prior (Beta Tab) Step 2 – Specify Data (Bayes-Binomial) 
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DSW Binomial-Beta Bayesian Example 

• Read the results 
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Poisson Likelihood – Gamma Conjugate 
Prior 

• Facts about gamma(, β) distribution, see HOPE 

– gamma(, β) density is  g(λ) = C λα-1e-λβ 

– mean =  / β 

– variance =  / β2 

– 100p percentile = GAMMAINV(p, , 1/) or  

 GAMMAINV(p, , 1)/ 

– Excel uses 1/ β instead of β as the second parameter 
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Poisson Likelihood – Gamma Conjugate 
Prior 

– SAPHIRE uses mean and  (called “r” by SAPHIRE) 

– Example gamma distributions: 

Pages A-18 through A-20 
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Poisson Likelihood – Gamma Conjugate Prior 

• If X is Poisson( t) and gprior() is gamma(prior , βprior), then 
posterior distribution of λ is 

• gamma(post , βpost ) 

–    post = prior + x (x = # events) 

–    βpost = βprior + t  (t = observation time) 

• prior is like prior number of events 

• prior is like prior observation time 

• Therefore, posterior mean = (prior + x)/(βprior + t) 

–    Again, a weighted average of MLE, x/t, 

  and prior mean, prior / βprior  

Pages 6-12, 6-13 
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DSW Poisson-Gamma Bayesian Example 

• Assume our prior is ~Gamma(2, 340 hr) 

• Assume we see 0 failures in 870 hours 

Step 1 – Specify the Prior (Gamma Tab) Step 2 – Specify Data (Bayes-Poisson) 
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DSW Poisson-Gamma Bayesian Example 

• Read the results 
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Exponential Likelihood – Gamma 
Conjugate Prior 

• If T1,…,Tn are independent observations from exponential(λ) 
distribution and gprior() is gamma(prior, βprior), then posterior 
distribution of λ is 

• gamma(post, βpost) 

–    post = prior + n   (n = # events) 

–    βpost = βprior + Σti   (ti = observed times of n events) 

• Again, for a gamma(, β) distribution 

– mean =  / β 

– variance =  / β2 

– 100p percentile = GAMMAINV(p, , 1/) 

 

Page 6-61 
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DSW Exponential-Gamma Bayesian 
Example 

• Assume our prior is ~Gamma(2, 340 hr) 

• Assume we tested five components and saw times-to-
failure of: 205, 100, 760, 450, 1100 hours 

Step 1 – Specify the Prior (Gamma Tab) Step 2 – Specify Data (Bayes-Exponential) 
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DSW Exponential-Gamma Bayesian 
Example 

• Read the results 
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LOSP EXAMPLE 
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Prior Distributions for LOSP Example 
(For Later Reference) 

•  LOSP ~ gamma(1.58, 43.96 reactor-critical years) 

– From “Reevaluation of Station Blackout Risk at Nuclear Power 
Plants:  NUREG/CR-6890, December 2005 

– This is the composite from several subtypes of LOSP event 

• pFTS ~ beta(0.957, 190) 

– From S. A. Eide, “Historical Perspective On Failure Rates for 
US Commercial Reactor Components,” Reliability Engineering 
and System Safety, 80 (2003), pp. 123-132 

•  FTR ~ gamma(1.32,1137 hrs) 

– From Eide (2003) 

– This is the composite of two rates 
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Prior Density Plots:  LOSP 

• LOSP 
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Prior Density Plots:  FTS 

• pFTS 
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Prior Density Plots:  FTR 

• FTR 
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LOSP Example Data 

• The observed number of LOSP events over a period of 
time 

– 1 initiating event in 9.2 operating years 

• The observed number of failures out of a number of 
demands 

– 1 failure to start in 75 demands 

• The observed number of failures in an observed total 
operating time 

– 0 failures to run in 146 running hours 
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LOSP Frequency Update with DSW 

• For LOSP frequency, aleatory model is Poisson 

1. Specify prior (Gamma tab)~gamma(1.58, 43.96 rcy) 

2. Bayesian update, so select “Bayes-Poisson” tab 

Distribution Summary 

Worksheet – Ver 1e.xlsx 

0.0E+00 2.0E-02 4.0E-02 6.0E-02 8.0E-02 1.0E-01 1.2E-01

Posterior when using the Informed Prior
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EDG FTS Update with DSW 

• For EDF fails to start, aleatory model is Binomial 

1. Specify prior (Beta tab)~beta(0.957, 190) 

2. Bayesian update, so select “Bayes-Binomial” tab 

Distribution Summary 

Worksheet – Ver 1e.xlsx 

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02

Posterior when using the Informed Prior
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EDG FTR Update with DSW 

• EDG fails to run, aleatory model is Poisson 

1. Specify prior (Gamma tab) ~gamma(1.32,1137 hrs) 

2. Bayesian update, so select “Bayes-Poisson” tab 

Distribution Summary 

Worksheet – Ver 1e.xlsx 

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03 2.5E-03 3.0E-03

Posterior when using the Informed Prior
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Summary of Bayesian Estimates for 
LOSP Example 

 

Parameter 

 

Distribution 

 

Point Est. 
(Mean) 

 

90% Interval 

 

Distribution 

LOSP Industry Prior 

Posterior 

3.6E-2 yr -1 

4.9E-2 yr -1 

(4.6E-3, 9.2E-2) yr -1 

(1.1E-2, 1.1E-1) yr -1 

Gamma(1.58, 43.96) 

Gamma(2.58, 53.16) 

pFTS Industry Prior 

Posterior 

5.0E-3 

7.4E-3 

(2.3E-4, 1.5E-2) 

(1.3E-3, 1.8E-2) 

Beta(0.957, 190) 

Beta(1.957, 264) 

FTR Industry Prior 

Posterior 

1.2E-3 hr -1 

1.0E-3 hr -1 

(1.1E-4, 3.2E-3) hr -1 

(9.6E-5, 2.8E-3) hr -1 

Gamma(1.32, 1137) 

Gamma(1.32, 1283) 

Posterior credible intervals generally are shorter than those from data alone (i.e., 
confidence interval) or prior alone (prior credible interval) 
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Comparison of Posterior and Prior:  LOSP 

• LOSP 

0.0E+00 2.0E-02 4.0E-02 6.0E-02 8.0E-02 1.0E-01 1.2E-01

Posterior when using the Informed Prior

0.0E+00 2.0E-02 4.0E-02 6.0E-02 8.0E-02 1.0E-01 1.2E-01

Informed Prior
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Comparison of Posterior and Prior:  FTS 

• pFTS 

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02

Posterior when using the Informed Prior

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02

Informed Prior
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Comparison of Posterior and Prior:  FTR 

• FTR 

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03 2.5E-03 3.0E-03

Posterior when using the Informed Prior

0.0E+00 5.0E-04 1.0E-03 1.5E-03 2.0E-03 2.5E-03 3.0E-03

Informed Prior
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LOSP Updates with RADS Calculator 

• RADS (Reliability and Availability Data System) was 
developed for NRC by INL 

• Both stand-alone version and web-based calculator 

• Will show web-based calculator in this course 

• Access calculator at  

 https://nrcoe.inel.gov/radscalc/Default.aspx 
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LOSP Updates with RADS Calculator 
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LOSP Update with RADS Calculator 

• Menu options across the screen 

– Select Analysis of Unpartitioned Data 

• Bayes Analysis 
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LOSP Update with RADS Calculator 

• For LOSP frequency, select “Failure Rate” 

• Enter data 

– “Number of Failures” 

– “Exposure Time” 

• Units are not specified 

• Click the “Prior Distribution” bar towards bottom-left 

– Select gamma prior ~gamma(1.58, 43.96) 

– Enter “a” (alpha=1.58) and “b” (beta=43.96) 

• Press “Calculate Bayes” 
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RADS Calculator results 
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LOSP Update with RADS Calculator 

• For EDG failure to start, select “Demand Probability” 

• Enter data 

– “Number of Failures” 

– “Number of Demands” 

• Select beta prior and enter “a” (alpha) and “b” (beta) 

• Press “Calculate Bayes” 
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EDG FTS Update with RADS Calculator 
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NONINFORMATIVE PRIORS 
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Noninformative (Formal) Prior Distributions 

• The original intent of “noninformative” priors was to 
answer question 

– How do we find a prior representing complete ignorance? 

• Rev. Bayes suggested a uniform prior 

– Laplace used this in his activities with great success 

– But, there are philosophical/mathematical problems with 
this 
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Noninformative (Formal) Prior 
Distributions 

• Sir Harold Jeffreys suggested a prior that was invariant to changes 
in 

– Scale 

– Location 

• Consequently, so-called “noninformative” prior is typically not 
uniform for the parameter of interest 

– It is uniform (or approximately so) for some transformed 
parameter 

– Instead, it depends on the process generating the data 

– Has property that the Bayes posterior intervals are 
approximately equal to frequentist confidence intervals (exactly 
equal for continuous data) 

• Formal priors “let the empirical data speak for themselves” 
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Noninformative (Formal) Prior 
Distributions 

• Other formal priors have been developed 

• Often used as “objective” or reference prior 

– Also called “vague” or “diffuse” prior 

– Jeffreys prior is most common choice of formal prior for 
single-parameter problems 

Sir Harold Jeffreys 
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Jeffreys Prior Distributions 

• For binomial(n, p) aleatory model 

– Jeffreys noninformative prior for p is beta(1/2, 1/2), which is a 
proper prior (integral equals 1) 

• For Poisson(t) aleatory model 

– Jeffreys noninformative prior for  can be thought of as 

 gamma(1/2, 0)  (improper prior, integral diverges) 

• For exponential() aleatory model 

– Jeffreys noninformative prior for  can be thought of as 
gamma(0, 0)  (improper prior, integral diverges) 

  

Pages B-12 through B-14, 

6-14, 6-37, 6-61, 6-62 



3-77 

Jeffreys Prior Distributions 

• Two of these priors look like  

 

 

 

 

 

 

 

 

          gamma(1/2, 0)                                beta(1/2, 1/2) 

0
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0.0E+00 2.0E-01 4.0E-01 6.0E-01 8.0E-01 1.0E+00
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Binomial Model 
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0.00002
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0.00008

0.0001

0.0E+00 2.0E+04 4.0E+04 6.0E+04 8.0E+04 1.0E+05
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Poisson Model 
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Updating Jeffreys Prior Distributions 

• For binomial(n, p) aleatory model 

– Jeffreys noninformative prior for p is beta(½, ½) 

– Posterior is beta(x + ½, n – x + ½) 

• For Poisson(t) aleatory model 

– Jeffreys noninformative prior for  is gamma(½, 0) 

– Posterior is gamma(x + ½, t) 

• For exponential() aleatory model 

– Jeffreys noninformative prior for  is gamma(0, 0) 

– Posterior is gamma(n,  ti) 
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Jeffreys Prior Distributions 

• Let us compare results from these priors to frequentist 
confidence intervals 

0.0 0.1 0.2 0.3 0.4 0.5

90% intervals for p

 

3/30

1/10

0/5
 

Conf. interval

Posterior with Jeffreys prior
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Using DSW to Update Jeffreys Prior 
Distributions 

• Select appropriate tab (e.g., Bayes-Binomial) 

• Enter observed data (e.g., 1 failure in 75 demands) 

• Read off posterior from column labeled “Jeffreys” 

Jeffreys

1.5

74.5

Beta(1.5, 74.5)

2.4E-03

8.1E-03

2.0E-02
2.7E-02

5.1E-02
0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 3.0E-02 3.5E-02 4.0E-02

Posterior when using the Jeffreys Prior
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Using RADS Calculator to Update 
Jeffreys Prior Distributions 

• Select “Jeffreys noninformative” as prior distribution 

• Enter observed data 

• Press “Calculate Bayes” 
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Data Versus Prior Distribution 

• As amount of data increases, prior becomes less 
important 

Siu and Kelly, 1998 
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Constrained Noninformative (CNI) Prior 

• Recall that Jeffreys prior for binomial likelihood is 
beta(½, ½) 

– The prior mean is 0.5 (quite large if a failure prob.) 

• With sparse data, prior mean can influence results too 
much 

• To overcome this, can use prior which has specified 
mean, but is close to Jeffreys prior otherwise 

– Specified mean might be industry average value 

• Result is called “constrained noninformative” (CNI) prior 

Left to right:  Claude Shannon, Edward 

Jaynes, Corwin Atwood 
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Constrained Noninformative Prior 

• Cannot be written in form of standard distribution for case of 
binomial likelihood 

– Approximated well by beta distribution with α = 0.5 

• See Table C.8 in HOPE for precise values of α 

– For the beta, the mean = α / (α + β), β can be found to be 

β = α(1-mean)/mean  

• For Poisson likelihood, CNI prior is gamma(½, 1/(2*mean)) 

• For exponential likelihood, cannot define CNI prior, as it is not 
proper, therefore cannot have finite mean 

– Alternative is maximum entropy prior, which is 

• Gamma(1, 1/mean) 

• This is an exponential distribution 
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Updating CNI Prior with DSW 

• Is conjugate for Poisson and binomial data 

• Enter specified mean value 

• Enter data observed 

• Read off posterior results in column labeled “CNI” 

• Example:  assume mean probability of EDG failure to 
start is thought to be 0.01 

– Take this as mean of CNI prior and update with 1 failure in 
75 demands 
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Updating CNI Prior with DSW 

CNI

1.5

123.5

Beta(1.5, 123.5)

1.4E-03

4.9E-03

1.2E-02
1.6E-02

3.1E-02

Results 

0.0E+00 5.0E-03 1.0E-02 1.5E-02 2.0E-02 2.5E-02 3.0E-02

Posterior when using the CNI Prior
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Updating CNI Prior with RADS Calculator 

• Input parameters of beta or gamma CNI prior, as 
appropriate 

• Press “Calculate Bayes” 
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NONCONJUGATE PRIORS 
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Nonconjugate Priors 

• For each aleatory model, there is at most one conjugate prior type 

– All other distributional forms are nonconjugate 

– Integral in denominator of Bayes’  Theorem must be done 
numerically 

• Most common nonconjugate prior in PRA is lognormal distribution 

– Originally used in WASH-1400 to represent plant-to-plant 
variability in parameter values 

– Very convenient when uncertainty spans several orders of 
magnitude 

– Useful in expert elicitation (e.g., seismic PRA, NUREG-1829) 

• Elicit median and upper bound, 5th and 95th percentiles, etc. 
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Nonconjugate Prior Distributions – The 
Concept 

• Generic databases often express uncertainty in terms of 
lognormal distribution 

• Experts often provide order-of-magnitude estimates, 
represented well by lognormal distribution 

• For these or other reasons, we may prefer a 
nonconjugate prior 

• When prior is not conjugate 

– Posterior distribution must be found by numerical 
integration.  Will use online RADS calculator. 

Pages 6-16 through 6-20, 6-39 through 6-43 
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Lognormal Distribution 

• Definition of a lognormal distribution: 
– X is lognormal(μ, σ2) if ln(X) is normal(μ, σ2) 

• Will encounter lognormal distribution in various areas of 
risk assessment 
– Often used as a prior distribution in PRA, even though it 

is not conjugate 

– Sometimes used as likelihood function (e.g., LOSP 
recovery time) 

• Covered in P-501 and P-502 courses 

– Often used to model hazard (earthquake frequency) and 
fragility (probability of seismic failure) in seismic PRA 

Pages A-16, A-17 
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Facts About the Lognormal Distribution 

• Median of X is eμ   Mean of X is exp[ + (½)2] 

• Variance of X is (mean)2[exp(2) – 1] 

• Error factor (EF) is defined as e1.645σ 

• Other ways to write EF (applies only to lognormal) 

• EF = 95th/50th = 50th/5th = (95th/5th)1/2 

•  Probability 

   

 where Ф is tabulated in HOPE, Appendix C 

– Can also use =LOGNORMDIST(x, , ) in Excel 

– or                  =NORMDIST(LN(x), , , TRUE) 

• Percentile 

– Can use =LOGINV(p, , ) in Excel 








 


σ

μx
xX

ln
)Pr(
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Lognormal Distribution 

• Lognormal distribution is determined (in general) by any 
two of 

– μ  

– σ2  

– median 

– mean 

– variance 

– EF or upper percentile 

• SAPHIRE uses mean and EF 
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Lognormal Distribution in DSW 

• Parameterized using μ and σ  

• Sheet also includes “lognormal calculator” when given 

– Mean & EF 

– Median & EF 

– Mean and standard deviation 

• These return μ and σ  

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.0E+00 2.0E-01 4.0E-01 6.0E-01 8.0E-01 1.0E+00 1.2E+00
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f,
 f(

x)
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Updating Lognormal Prior with RADS 
Calculator 

• Example:  Interested in failure on demand for standby 
pump 

• Generic database shows p is lognormal with 

– mean of 0.003 

– error factor of 10 

• Observe 0 failures in 36 demands 

• What is posterior mean of p? 
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Updating Lognormal Prior with RADS 
Calculator 

• Select “Demand Probability” and enter input data in 
usual way 

• Select “Lognormal” as the prior distribution and enter 
mean and error factor 

• Push “Calculate Bayes” 

• Note that posterior distribution is not lognormal 
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Updating Lognormal Prior with RADS 
Calculator 
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Lognormal (cont.) 
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Section 4:  Introduction to Monte Carlo 
Sampling 

• Purpose 

– Concept of simulating a random variable via Monte Carlo 
sampling will be introduced and illustrated using Excel 

• Objectives 

– Students will learn 

• How to generate uniform random numbers in Excel 

• How to generate a binomial random variable 

• Concept of using inverse c.d.f. to generate random 
samples from a specified distribution 

• Use of transformations to generate random samples 

• Determining sample size 
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Monte Carlo Sampling – Purpose in PRA 

• Approximate a distribution by generating a large random 
sample from the distribution 

• Useful for 

– Propagating uncertainties through logic model (e.g. 
fault tree or event tree) 

– Approximating posterior distribution when it does not 
have simple form (e.g. when prior is not conjugate) 

Stanislaw Ulam 
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Sampling from a Uniform(0,1) 
Distribution 

• Many software packages can sample from uniform 
distribution 

– Excel, R, Visual Basic, FORTRAN, SAPHIRE, etc. 

• Completely deterministic, not random 

– “Looks” random, thus called “pseudorandom” 

– Really, the output is a long (e.g. ~231)  sequence of 
distinct numbers 

• Order of numbers is unpredictable unless algorithm 
used to generate them is known 

– User inputs a “seed”, or computer uses the clock time 

• Seed determines where in the sequence we start 
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Pseudorandom Numbers 

“Dilbert” Scott Adams 
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Generating Uniform Random Numbers in 
Excel 

• Use RAND() to generate from uniform(0, 1) 

– Can use F9 function key to recalculate (generate 
new random number) 

• Use (b – a)*RAND() + a to generate random numbers 
from uniform(a, b) 

• Use RANDBETWEEN(a, b) to generate uniformly 
distributed integers between a and b 
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Sampling from a Binomial Random 
Variable (aleatory model) 

• To simulate a binomial(n,p) random variable, iterate the 
following: 

– Generate n random numbers u1 through un from a 
uniform(0,1) distribution 

– If ui < p define xi = 1.  Otherwise define xi = 0. 

– Set y = x1 + ... + xn 

– Repeat 

• The values of y are a sample from a binomial(n,p) 
distribution 
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Use of “Inverse CDF method” 

• Iterate the following: 

– Generate u from a uniform(0,1) distribution 

– Set y = F-1(u), where 

• F is the CDF of Y, F(y) = Pr(Y < y) 

• F-1 is inverse function, F(y) = u            F-1(u)=y 

• Values of y are a random sample from the distribution of Y 

• Idea… 

– Choose most values where F is steep 

 

 

Page 6-41 
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Example:  Sampling from Exponential 
Variable via Inverse CDF 

• Recall CDF for exponential 

F(t) = 1 – e-t 

• ti = F-1(ui) = -1/[ln(1 – ui)] 

• The tis are a sample from an exponential() distribution 

• Thus, if we know 

– The rate  

– And can generate a uniform random number 

– We can generate exponential times, ti 
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Example:  Sampling from Beta(, ) 
Distribution in Excel 

• Generate ui from uniform(0, 1) distribution 

– RAND() 

• Obtain beta-distributed values from BETAINV(ui, ,  ) 

– These “inverse functions” in Excel allow us to easily 
generate random samples from the distribution 
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Use of Transformation 

• For example, to generate lognormal Y 

– First generate n values from a normal distribution, 
call them x1 through xn 

• Set yi = exp(xi), so that ln(yi) = xi 

• The yi values are a random sample from a lognormal 
distribution 

 

ex 

Transformation 

x y=ex 
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Example: Lognormal Sampling with 
mean of 2E-4 and EF=7 
 
 
• Generate ui as before 

– RAND() 

• Generate normal distribution 
values via =norminv(x,μ,σ) 

– First need to calculate μ 
and σ 

• Obtain lognormal distribution 
values by taking ey 

• NOTE:  We could sample 
directly using 

 =LOGINV(x,μ,σ) 
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Use of Transformation:  Exponential To 
Weibull 

• Can generate Weibull samples from exponential 
samples 

– First generate n values from an exponential() 
distribution, call them x1 through xn 

– Set each ti = (xi)
1/ 

– The tis will have a Weibull(, ) distribution 

• f(t) =   t - 1exp(-t) 

 

Waloddi Weibull 
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Use of Transformation:  Exponential To 
Weibull 

t = t1/ 
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Determining Sample Size 

• Let true distribution of Y have mean m and variance s2 

• Generate (large) sample, y1, …, yn 

• Estimate m by sample mean, i.e. average of sample values, 

• Approximate 95% confidence interval for m is 

  

 

– Here s is sample standard deviation, an estimate of s 

 

–          is called the standard error 

 

• So to estimate m and cut the “error” by a factor of 2, n must be 
increased by a factor of 4 

• Pragmatically, just keep track of the mean and 95th percentile 

– If relatively stable, you have enough samples 

y

n

s
y

2


n

s
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Sampling in DSW 

• Each of the probability distribution pages has a section 
demonstrating Monte Carlo sampling 

• For example, for Lognormal 
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Sampling in DSW (cont.) 

=RAND =Loginv =IF 

=Average =Stdev 

=Percentile 
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Section 5:  Uncertainty Propagation in Risk 
Assessment 

• Purpose 

– Illustrate, using Excel, how epistemic uncertainties in 
parameters are propagated through PRA models to obtain 
Bayesian estimates of risk metrics 

• Objectives 

– Through examples using Excel, students will learn about 

• Monte Carlo sampling from distributions 

• Estimation of a “top event” probability or sequence 
frequency by propagation of distributions through a logic 
model 

• Simple Monte Carlo sampling and Latin Hypercube sampling 
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Risk 

• Recall the three questions a risk analysis attempts to answer: 

– What undesired things could happen? 

– What are their probabilities or frequencies? 

– What are their consequences? 

• Must quantify answers, and assess uncertainty in these answers 

• In LOSP example 

– Events 

• Initiating event could occur 

• Then EDG power system could successfully operate or it 
could fail 

– Consequences 

• Plant trip likely, perhaps worse if EDGs fail 

–  Frequency of bad consequence is subject of this section 

 

 

Stan Kaplan John Garrick 
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Overall Approach to Uncertainty Propagation 

• In risk assessment, we estimate 

– Probability of “top event” (if looking at fault trees) 

– Frequency of “end state” (if looking at event trees) 

• These estimates are typically based upon “minimal cut sets” 

– Minimal cut sets contain parameters such as 

• Failure rates 

• Probabilities of failure on demand 

– In the LOSP example, we develop SBO as a (fairly complicated) 
function of LOSP, pFTS, and FTR 

– We approximate the Bayes distribution of the end-state 
frequency as follows 
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Overall Approach to Uncertainty Propagation 

1. Randomly sample a value of each basic parameter 

– This sample comes from the parameter’s posterior distribution 

2. Samples are used to quantify a desired 

– Top-event probability 

– End-state frequency 

3. This process is repeated many times 

– Use new sampled values of the basic parameters on each 
iteration 

– Obtain many calculated values of desired result 

– Resulting values are a (pseudo)random sample from the 
Bayesian distribution of the top-event probability or end-state 
frequency 

• Together, they approximate the resulting distribution 



5-5 

Example 

• Evaluate fault tree to determine cut sets 

– Single cut set  A*B 

• In Excel, create samples for A, B 

• Use samples to sample top event 

– MY-TOP = A × B 

• Use MY-TOP samples to produce 

– E[ ] 

– Percentiles 

– Distribution 

– … 

 

i RAND A RAND B Cut Set

1 0.750 0.3 0.410 0.082 0.024605

2 0.612 0.2 0.398 0.080 0.019494

3 0.553 0.2 0.670 0.134 0.029653

4 0.331 0.1 0.994 0.199 0.026323

5 0.117 0.0 0.775 0.155 0.007236

6 0.729 0.3 0.081 0.016 0.004705

7 0.603 0.2 0.408 0.082 0.019696

8 0.359 0.1 0.900 0.180 0.025822

9 0.780 0.3 0.988 0.198 0.061584

10 0.622 0.2 0.784 0.157 0.038993

Mean= 0.545 0.22 0.641 0.128 0.026

Exact Mean= 0.5 0.2 0.5 0.1

Random sampling for a cut set A*B
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LOSP Example 

Loss of 

Offsite Power 

Diesel Generator 

System Failure 

Diesel Generator 

System Success 
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LOSP Example 

• Note that LOSP is just one initiating event…this analysis 
process is carried out for all results from all initiating 
events 

LOSP, trip, etc. 
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PRA Minimal Cut Sets 

• In every minimal cut set there are “basic events” 

• Every basic event stored in PRA database typically has 
some epistemic uncertainty about the value used for the 
event 

– The propagation of this uncertainty through cut sets 
must be performed in order to understand the 
uncertainty in the overall result (e.g., CDF) 

– This uncertainty can be characterized via summary 
measures, such as mean value and 95th percentile 
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Schematic View of Uncertainty 
Propagation 
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Minimal Cut Sets in LOSP Example 

• SBO = LOSP × Pr[EDG system fails] 

• Pr[EDG system fails] 

 = Pr[(FTSA and FTSB ) or (FTSA and FTRB ) 

   or (FTSB and FTRA ) or (FTRA and FTRB )] 

  Pr(FTSA and FTSB ) + Pr(FTSA and FTRB ) 

  + Pr(FTSB and FTRA ) + Pr(FTRA and FTRB ) 

 

– Using rare event approximation, Pr[EDG system fails]: 

 = Pr(FTSA)×Pr(FTSB) + Pr(FTSA)×Pr(FTRB) 

  + Pr(FTSB)×Pr(FTRA) + Pr(FTRA)×Pr(FTRB) 

  assuming EDGs A and B fail independently 
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Minimal Cut Sets in LOSP Example 

• Generic forms for basic event probabilities 

– Pr(FTS) = pFTS 

– Pr(FTR) = 1 –                    ≈ FTRtmission 

 

• Pr(FTSA)×Pr(FTSB ) = ? 

– pFTS
2  ?   (one estimated parameter) 

– pFTS-A ×pFTS-B   ? (two estimated parameters) 

 

missionFTRt
e


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How Many Distinct Parameters in 
Example? 

• If we distinguish between pFTS-A and pFTS-B 

– Assumes that the two p’s differ significantly 

– Use only data from ith  EDG to estimate pFTS-i 

• Have relatively more uncertainty in each estimate 

• Same prior for each pFTS-i ? 

• If we model only a single pFTS 

– Assumes that the two p’s are nearly equal 

– Uses data from both EDGs, and generic prior, to estimate the 
one p 

• Have relatively less uncertainty in the one estimate 

• Use generic prior 
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How Many Distinct Parameters in Example?  

• If we assign independent Bayes distributions to pFTS-A and  pFTS-B 

–      E(pFTS-A×pFTS-B) =  E(pFTS-A)×E(pFTS-B) 

• If we assign Bayes distribution to pFTS 

–      E(pFTS
2) > E(pFTS)×E(pFTS) 

• So if the two parameters are really the same 

– Modeling them with independent distributions (uncorrelated 
sampling) yields too small a mean. 

• In SAPHIRE, to force pFTS-A and pFTS-B to equal each other, i.e. to 
equal pFTS  

– Assign them to a single correlation class. 

• For additional information, see (Apostolakis and Kaplan, 1981) 
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Un- versus Correlated Example 

1
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OR gate with 

10 inputs 

 

Each inputs is 

~beta(1, 95) 

 

Mean=0.01 

Correlated Uncorrelated 

Metric Uncorrelated Correlated

AVERAGE 9.9E-02 1.1E-01

MEDIAN 9.6E-02 9.8E-02

5th 5.8E-02 5.8E-03

95th 1.4E-01 2.7E-01

STD.DEV. 2.7E-02 8.9E-02
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SBO Frequency in LOSP Example 

• Assume single pFTS, single FTR 

 

• SBO ≈ LOSP ×[pFTS
2 + 2pFTS FTRtmission + (FTRtmission)

2] 

 

• Approximate the Bayes distribution of SBO  by a (large) random 
sample from the distribution 

 

losp demo problem.xls 
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Uncertainty Analysis for Other Applications 
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Propagation of Uncertainty 

• To perform uncertainty analysis, the analyst must specify: 

1. The type of sampling 

– Simple Monte Carlo sampling (SMCS) 

– Called “Monte Carlo” in SAPHIRE 

– Latin hypercube sampling (LHS) 

– Grid sampling (not discussed in this course) 

2. The number of iterations (i.e., samples) 

– For example, if we specify 2,000 samples and there 
are 10 unique basic events, we generate 20,000 
random numbers 

3. The random number generator seed value 
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Two Kinds of Sampling 

• Simple Monte Carlo Sampling (SMCS) 

• In simple Monte Carlo sampling, each parameter is 
sampled (pseudo)randomly from its specified 
distribution 

1. Each set of sampled values is entered into the 
minimal cut sets 

2. The frequency/probability of the top event is 
calculated for each set of sampled values 

3. This process is repeated many times (up to the 
number of samples specified)  
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Two Kinds of Sampling 

• Latin Hypercube Sampling (LHS) 

• In Latin hypercube sampling, each parameter is 
sampled in a stratified way, to guarantee that each 
portion of the range of the distribution is represented 

• An example with 10 

 stratifications is shown 

– Within each portion, 

 we randomly sample   
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Latin Hypercube Sampling 

• For example, let us denote one parameter by p 

– Bayesian distribution of p is known:  the posterior distribution 
of p based on prior information and relevant data 

– If 10 samples were to be taken 

1. p would be sampled randomly from interval (p0.0, p0.10), 
giving a value that we denote as p1 

2. Again, sample randomly from interval (p0.10, p0.20), giving a 
value that we denote at p2 

3. Repeat process until we have p10 [from interval (p0.90, p1.0)] 

– This is stratified sampling, in which the sampled points are 
forced to cover entire range of the distribution  



5-21 

Latin Hypercube Sampling 

• After all parameters in the model have been sampled in this 
stratified way, they are randomly matched to each other 

– In example with LOSP, pFTS, and FTR, one of the sampled 
values of each parameter would be chosen 

– However, they would be chosen so that the largest value of one 
parameter is not necessarily matched with largest or smallest 
values of other parameters 

– Instead, the choice of each pairing is random 

– For the chosen values, the top-event is calculated 

– Then another set of sampled parameter values is chosen, using 
values that have not been chosen yet 

• In this way, a number (10 in this example) of values are calculated 
for the end-state frequency 
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Differences Between Sampling Types 

• While there are computational differences between the 
two techniques (SMCS and LHS): 

– One should not be too concerned about which 
technique is selected for a particular analysis 

– Instead, one should be concerned about 
convergence of the numeric calculation 

– Convergence may be checked by noting change (or 
lack thereof) of uncertainty results as the number of 
samples is varied 

• The samples from either method converge to the Bayes 
distribution of the end-state frequency or top-event 
probability 
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The Seed Value 

• A seed value tells software where, in sequence of possible random 
numbers, to start selecting random numbers 

– The random number generator gives a sequence of “random” 
integers (which are typically converted to real numbers) 

– A seed of “51” may tell us to start at the ith random integer 

– A seed of “1,236” may tell us to start at the jth random integer 

– etc. 

• Again, checking for convergence should make seed selection 
irrelevant 

– But, to reproduce analysis results, one must use the same seed 
and same number of samples 
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Accuracy of Sampling 

• Accuracy of a simple random sample is roughly proportional to 
square root of sample size 

– For example, if SBO is sampled from its distribution n 
times 

• Mean of the distribution is estimated by average of n 
sampled values (the sample mean), and this average has 
standard deviation proportional to 

• Estimate of this quantity is the standard error 

– A confidence interval equals the sample mean  a 
multiple of the standard error 

•  LHS is more complicated than simple random sampling 

– But requires fewer samples for comparable accuracy 

– Therefore, it is justified if each calculation of top-event is 
expensive or time-consuming 

n1
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Uncertainty Analysis Results 

• Every result from the PRA is uncertain 

– Parameters used to quantify basic events (p for FTS, 
 for FTR, etc.) 

– Initiating event frequency 

– System failure probability 

– Overall results such as core damage frequency and 
importance measures 
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